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1. Introduction
In many operating processes, gas-to-steam bubbles 

play a major technological role. As an example, 
we should mention the following technologies: 
degassing of water, distillation homogenization of 
fuel, mixing of colloidal solutions, foam formation 
in the food industry, etc. Modern technologies for 
the insulating materials production [1], desalination 
of sea water with the help of isobutane hydrate [2-
4], and obtaining of natural gas hydrate [5, 6] for 
transportation and storage are also based on heat and 
mass transfer processes in the gas-liquid systems. 
Generally, formation and existence of gas-to-steam 
bubbles are accompanied by intensive heat transfer, 
mass transfer and phase transition processes. The 
complexity of the „direct” observations (small 
bubble sizes, high velocity of processes) led to the 
widespread use of mathematical modeling research 
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methods. Mathematical models allow identifying the 
most powerful factors and optimizing technological 
processes. Correctness of the mathematical models of 
gas-to-steam bubbles is determined by the accuracy 
of accounting all thermal and physical processes 
taking place in the liquid and gas.

2. Literature review and problem statement 
To improve the accuracy of simulating heat transfer 

processes in the gas-to-steam bubble, it is necessary 
to consider the heat transfer into the liquid medium. 
A number of authors take the liquid temperature 
to be constant: when calculating the materials 
swelling [1], when determining the thermodynamic 
characteristics of steam [7] and cavitation bubbles 
[8]. In [9], the liquid temperature is described by the 
exponential function that does not depend on time 
and the direction of the bubble wall’s movement. 
Some authors [10] consider the liquid’s heat transfer 
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A b s t r a c t
The work is devoted to the study of the transient processes of heat and mass transfer in the volume of a liquid. The method 
of calculating the temperature field in a liquid takes into account phase transitions, motion of the bubble wall and heat 
exchange processes near its surface. The method takes into account the change in the thermophysical characteristics 
of a liquid when its temperature changes. The results of the research can be used to optimize the various technological 
processes associated with cavitation, boiling and the formation of gas hydrates.
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S t r e s z c z e n i e
Artykuł dotyczy analizy nieustalonych zjawisk wymiany ciepła i masy w dużej objętości cieczy. Metoda określenia pola tem-
peratur w cieczy uwzględnia przemiany fazowe, ruch pęcherzy i procesy wymiany ciepła przy ścianie. Metoda ta bierze pod 
uwagę zmianę właściwości termofizycznych cieczy, gdy zmienia się jej temperatura. Wyniki badań mogą być wykorzystane 
do optymalizacji różnych procesów technologicznych związanych z kawitacją, wrzeniem i tworzeniem hydratów gazowych.
Słowa kluczowe: właściwości termofizyczne cieczy nasyconej gazem, pęcherzyki gazu i pary, wymiana ciepła w mediach 
dwufazowych, przemiany fazowe
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layer to be so thin that the curvature of the bubble’s 
surface can be ignored. However, such assumptions 
are only possible for a very limited group of tasks. In 
[11] for cavitation and in [12] for steam bubbles, the 
analytical solution for the problem of non-stationary 
heat conductivity in a layer of liquid surrounding 
an oscillating bubble is suggested. As a result of the 
author’s assumptions, the solution of this problem 
is obtained, where the liquid’s heat transfer layer is 
equal to the radius of the bubble and does not depend 
on thermal and physical characteristics of the liquid. 
In [13], only heat conductivity in a liquid is taken 
into account, without considering phase transition 
processes. An overview of the above literature 
sources shows that phase transition processes in the 
liquid surrounding the gas-to-steam bubble are not 
sufficiently studied. The temperature regime of gas 
inside the bubble can widely vary: from a temperature 
below the freezing point of the liquid during periods 
of the bubble’s “growth” to a temperature higher than 
the boiling point of the liquid during the periods of 
the bubble’s compression. Changing the phase state 
of the liquid causes significant change in heat and 
mass transfer processes at its boundary.

To expand the l i mit s of the gas-to-steam bubble’s 
mathematical modeling, it is necessary to consider 
phase transition processes of heat transfer in the liquid 
surrounding the gas-tosteam bubble. As a result, 
thermal and physical characteristics of the substance 
at the bubble’s boundary can change considerably. 
The peculiarity of this task is movement of the 
bubble’s wall, whose velocity, at some moments, can 
reach several tens of meters per second.

3. The aim and objectives of the study
The aim of the present study was to design a 

mathematical model of heat transfer in the liquid 
surrounding the oscillating gas-to-steam bubble. Heat 
transfer processes in the liquid may be accompanied 
by a change in the aggregate state and in thermal 
and physical characteristics. To achieve this aim, the 
following objectives were set: 
–	 to take into account non-stationary processes 

of changes in the liquid aggregate state and in 
its thermal and physical characteristics in the 
mathematical model;

–	 to calculate phase transition processes in the 
liquid surrounding the gas-steam bubble using 
mathematical modeling;

–	 to estimate the temperature regime in the liquid 
under different initial conditions.

4. A mathematical model of phase transition processes  
     in the liquid

To develop the mathematical model of heat transfer 
in the liquid, the following simplifying assumptions 
are applied: 
–	 the boundary conditions of the second kind are 

prescribed near the bubble’s surface;
–	 the gas-steam bubble has a spherical shape and is 

surrounded by an infinite amount of liquid;
–	 the bubble’s center is not displaced relative to the 

liquid. 
To determine the temperature in the column of liquid 

surrounding the gas-to-steam bubble, it is necessary to 
consider the process of heat transfer within the liquid. To 
calculate the heat transfer by means of heat conduction, 
the Fourier heat transfer equation is normally used, and 
convection can be considered by applying the efficient 
thermal conductivity factor. Let us denote by “x” the 
coordinate, where the bubble’s radius is changing. To 
determine the unknown temperature on the surface of 
the bubble and in the column of liquid (Тτx), a nonlinear 
Fourier heat conductivity equation for a sphere can be 
used, with account of its walls mobility [9] and the 
action of sizable heat sources:
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where: ρr – liquid density, kg/m; cr – its heat capacitу, 
J/(kg°C); τ – time coordinate, sec; x  – velocity of 
the bubble’s radius change, m/sec; λr – conductivity 
factor of the liquid, W/(m°C); qv(x,T) – capacity of 
sizable heat sources, W/m3.

As a result of heat transfer processes at the boundary 
of the bubble, the liquid can change its thermal and 
physical characteristics, so we will be solving the 
problem as a non-linear one. The use of heat sources 
makes the equation (1) heterogeneous. Taking into 
account that the specific heat flow (q) near the surface 
of the bubble is known, we can write the boundary 
condition of the second kind: 
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Equation (2) takes into account the change in the 
thermal conductivity factor at the bubble’s boundary, 
for example, in the case of the liquid’s freezing. In 
such a statement, the problem is convenient to solve 
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by the method of finite elements. To describe the 
thermal conductivity in the liquid surrounding the 
bubble with radius R, let us divide the liquid layer 
into a series of concentric membranes (i), Figure 1. 
Let us set the mass distribution of each membrane:

(2) (1)

( ) ( 1)

2r r r

r i r r i

m K m

m K m -
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=                         (3)

where: mr(1) – mass of the 1st (internal) layer’s 
membrane, kg; mr(i) – mass of each subsequent 
membrane, kg; Kr – proportionality factor. 

This factor allows to “compact” the elements mesh 
near the bubble’s border and to “rarefy” it in the 
deeper layers of the liquid. The above factor is used to 
optimize calculations and its typical values are within 
1.5-2.

Fig. 1. Diagram of the liquid’s division into a series of 
concentric membranes

Now we shall determine the temperature on the first 
(internal) membrane’s internal surface. To do this, 
we formulate the equation of the first membrane’s 
thermal balance: 

1 2AKQ Q Q QΦ= + +                   (4)

where: QAK – heat flow that accumulates and causes 
the temperature increase of the given membrane, W; 
Q1 – heat flow from the surface of the bubble into 
the steam-gas medium, W; Q2 – heat flow from the 
second layer of the liquid into the first one, W; QФ – 
heat flow that causes an increase in the solid phase 
mass (e.g. ice), W. Let us reveal the value of these 
heat flows.

Heat flow, which is accumulated in the membrane 
and causes an increase in its temperature, can be 
determined by means of the known formula:
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where cr(1) is heat capacity of the first membrane’s 
medium, J/(kg°C).

We will write the heat flow from the bubble’s 
surface into its steam-gas medium as a boundary 
condition of the 2nd kind. Heat removal will reduce 
the membrane’s temperature, therefore this heat flow 
is negative:

1 ( , )R RQ F q τ= -                          (6)

where FR is heat transfer area, m2.
The heat flow from the outer membrane to the 

internal one is more convenient to consider within a 
single layer, for which at the given moment λr(i) = const
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The increase in the solid phase mass requires removal 
of heat energy from the designed membrane and, 
therefore, is an additional source of the heat energy 

(1)dm
Q r

dτ
Φ

Φ Φ=                        (8)

where: rΦ -  phase transition heat, J/kg; (1)mΦ -  solid 
phase mass of the 1st (internal) layer’s membrane, kg.

Taking into account the values of individual heat 
flows, formulas (5)-(8), for the internal membrane 
can be written as a general differential equation of the 
thermal balance:
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The last component of the equation (9) only 
exists under certain conditions, which need to be 
specified separately. Within a single iteration step, 
the membrane’s radius remains constant and, for 
convenience in calculations, it can be designated as:
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Now, the differential equation determining the 
temperature on the inner layer’s surface of the bubble 
is written as:
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In the absence of mass transfer processes, the mass 
of the 1st layer remains unchanged, therefore:
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Where the outer radius of the 1st membrane can be 

determined:
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Similarly, differential equations for all subsequent 
membranes can be written as:
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With account of the problem’s non-linearity, the 
temperature difference between the neighboring 
layers is more convenient to replace with the 
temperature difference between the middle of the 
layer and its edges (boundaries):
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where: ( , )ir iT δ τ+ -  temperature on the outer boundary 
of the i-th membrane, °C; ( , )ir iT δ τ- -  temperature 
on the internal boundary of the i-th membrane, 
°С. At every iteration step, these temperatures are 
determined with account of the thickness and thermal 
conductivity of the adjacent layers. The temperature 
at the outer boundary of the i-th membrane is:
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The temperature at its internal boundary:
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Factors K1, K2, K3, K4 are determined by the following 
formulas:
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Considering the membranes volumes, their radii 
can be determined:
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Based on (21), the average radius of the i-th 
membrane is found by the formula:
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Since the mass of the first membrane is not divisible 
in half, the 2nd membrane’s radius is determined by 
the following formula:
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Considering that the masses of the outer and the 
internal membrane halves are equal, the radii can also 
be determined by the analogous formulas. The outer 
radius of the i-th membrane is:
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The internal radius of the i-th membrane is:
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At particular moments, in different membranes, 
favorable conditions to perform phase transition can 
be created. In this case, it is necessary to consider 
three components: temperature regime, mass of 
the solid and liquid phases, the effect of sizable 
heat sources. The conditions of the first-kind phase 
transition consist of the two parts: the condition of 
icing and the condition of ice melting.

The condition for icing is:
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where: TΦ - phase transition temperature, °С; ( , )irm τΛ - 
mass of the solid phase in the i-th layer at any moment, 
kg; ( , )irQ τΦ - heat flow, which is deduced from the i-th 
layer to erform the phase transition, W.

The condition for ice melting is:
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If the i-th layer undergoes a phase transition, then 
the temperature of this layer does not change, and
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In this case, the power of sizable heat sources can 
be determined by the formula:
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Whence, after simplification, we obtain
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Similarly, the power of sizable heat sources for the 
1-st membrane can be found as follows:
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The sizable heat sources’ intensity being known, 
the change of the solid phase mass can be determined.
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In the case of a phase transition, a change in the 
thermal and physical properties will take place in the 
i-th layer of the liquid. Therefore, at each iteration 
step, the thermal and physical characteristics of the 
layers need to be specified according to the formulas:
– density

( )( ) ( ) ( ) ( ) ( )
( )

( )

i i w i i i
r i

i

m m m

m

ρ ρ
ρ Λ Λ Λ+ -

=    (31)

– thermal conductivity
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– heat capacity
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The density change, with the constant mass, will 
change the size of the layers, which may complicate 
the calculation process. Taking into account that the 
density and heat capacity are used as the product, 
the density change can be replaced by the equivalent 
change in heat capacity. With account of the density 
correction, the i-th layer’s heat capacity is determined 
by the formula:
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where ρw is liquid density at the initial temperature, 
kg/m.

In this case, the density of all layers is given equal. 
To solve the system of differential equations (11) and 
(14), the Runge-Kutta 4-th order method is applied 
[14]. In order to assess the adequacy of the developed 
mathematical model, a computer software has been 
developed and a number of mathematical experiments 
have been performed.

The results of the calculation are reflected in the 
experiments No 1-6.

5. Results of the phase transition studies in the liquid
Source data. Let us consider the heat and mass 

transfer processes in the liquid at the initial stage of 
the barbotage introducing of bubbles into gas into 
water [15]. With regard to technology, such processes 
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are characteristic of carbonization [16], formation 
of isobutane hydrate [17] and other hydrates [18-
20]. Duration of the estimated time interval is 3-6 µs 
(microseconds). The time step is 0.005-0.01 ns, the 
specific heat flow near the bubble’s surface (boundary 
condition of the 2nd kind) is 1 MW/m. The initial 
diameter of the bubble is 0.1 mm, the initial water 
temperature is +0.5°C.

The estimated layers are 12 in number, Kr factor 
equals 1.5. The initial values of heat conductivity, 
density and heat capacity of water are taken at the 
temperature of +0.5°С. The heat of the water-to-ice 
phase transition is 335 kJ/kg. The temperature of the 
steam-gas medium of the real bubble can vary within 
a pretty wide range. To study the phase transition 
processes in water, the bubble with the steam-gas 
medium temperature below the phase transition 
temperature will be called “cold”. The bubble with 
the steam-gas medium temperature higher than the 
phase transition temperature will be called “hot”.

Experiment No. 1. Let us consider a bubble in the 
water formed during the barbotage gas throttling 
through the narrow nozzle. Due to the Joule-Thompson 
effect, the gas temperature inside the bubble is lower 
than the temperature of the surrounding liquid. 
Considering the gas pressure inside the bubble equal to 
the pressure of the water (with account of the surface 
tension forces), we will take the velocity of the bubble 
walls equal to 0 m/sec. The results of the temperature 
regime calculation for the liquid surrounding the 
“cold” bubble, are shown in Figure 2. 

Fig. 2. Diagram of temperature fields in the water 
surrounding a stationary wall “cold” bubble ( 0R =  m/sec)

Experiment No. 2. If the gas pressure in the bubble 
exceeds the pressure of the liquid, the bubble expands. 
Let us consider the processes in the liquid during the 
“cold” bubble expansion with the wall movement 

velocity of 10 m/sec. The calculation results are 
shown in Figure 3.

Fig. 3. Diagram of temperature fields in the water 
surrounding a “cold” bubble expanding with the velocity 
of 10R =  m/sec

Experiment No. 3. In the process of oscillation, the 
phase of the bubble’s expansion is replaced with the 
phase of compression. Let us consider the processes 
in the liquid during the period of the “cold” gas bubble 
compression with the wall movement velocity of –10 
m/sec. The calculation results are shown in Figure 4.

Fig. 4. Diagram of temperature fields in the water 
surrounding a “cold” bubble compressing with the velocity 
of 10R =  m/sec

During the period of the bubble compression, the gas 
temperature in it increases and favorable conditions 
are created for melting of the ice crust formed at 
the previous stages of the bubble’s oscillation. As 
time passes, the movement of the bubble’s wall 
slows down, and the process of expansion starts in 
the conditions of the high gas temperature. The next 
series of calculations was performed to study the 
phase transition processes around the “hot” bubble. 

Experiment No. 4. A bubble with “hot” gas is 
immobile and is surrounded with an ice crust. Let 
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us consider the process of ice melting around the 
bubble. Based on preliminary calculations, the initial 
ice temperature will be taken at –0.5°C.

Experiment No. 5. The “hot” bubble expands with 
the velocity of 10 m/sec. The calculation results are 
shown in Figure 6.

Fig. 5. Diagram of temperature fields in the water-
ice system surrounding the immobile “hot” bubble  
( 0R =  m/sec)

Fig. 6. Diagram of temperature fields in the water-ice 
system surrounding the “hot” bubble that is compressing 
with the velocity of 10R =  m/sec

Experiment No. 6. Let us consider the ice melting 
while a “hot” bubble is compressing with the velocity 
of 10 m/sec (Fig. 7). The initial temperature of ice 
was taken at –0.5°С.

Fig. 7. Diagram of temperature fields in the water-ice 
system surrounding the “hot” bubble that is compressing 
with the velocity of 10R = -  m/sec

6. Discussion of the results of the mathematical modeling  
     of phase transition processes in the liquid

The upper part of Figure 2 shows a relatively rapid 
cooling of the liquid to the temperatures close to 
the phase transition temperature (0°C). The phase 
transition itself is observed as an almost horizontal 
platform approximately in the center of the diagram. 
The left side of the diagram illustrates the process of 
ice cooling.

The stepped nature of the ice temperature is 
explained by a small number of the designed layers 
(12 pcs.). The freezing depth has made 5 layers of the 
liquid around the bubble for 2.0 ms.

As it is seen in Figure 3, the freezing depth has 
made 6 layers of liquid for 2.0 ms. Comparison of the 
frozen layers masses in Experiments 1 and 2 shows 
that when the bubble expands the liquid freezing 
is approximately 1.6 times faster. This is due to an 
increase of the heat transfer surface area when the 
bubble size is expanding.

In the left side of the diagram, the ice temperature 
is bearing a jagged nature. A slight rise in temperature 
is observed due to the reduction of thickness and the 
membranes’ thermal resistance in the process of the 
bubble expansion.

In general, reducing the solid phase membranes’ 
thickness leads to the fact that the surface temperature of 
the bubble is closer to the phase transition temperature 
than it was in experiment No. 1. The results of the 
“cold” bubble compression calculation, presented in 
Figure 4, demonstrate that in this case, the freezing 
of the liquid significantly slows down. Namely, the 
ice thickness was only 60% of the variant with an 
immobile bubble wall. This is explained by a reduction 
of the heat transfer surface area. Due to the freezing 
layers’ thickness increase, the thermal resistance grows 
and the internal surface temperature of the bubble 
reduces more rapidly than in experiments 1 and 2. The 
results of the immobile “hot” bubble calculation (Fig. 
5) show a relatively rapid initial warming of the ice 
layers to the phase transition temperature. Comparing 
the results with Experiment No. 1, it an be noted that 
the melting process occurs at almost the same velocity 
as that of the freezing process.

This is facilitated by the boundary condition of the 
2nd kind. Almost four times less than the thermal 
conductivity of water in comparison with that of ice, 
causes more intense heating of the interphase liquid-
gas surface. 

In experiment No. 5, as in experiment No. 2, ice 
melting is accelerated due to the heat transfer surface 
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expansion. Also, a slower wall temperature rise 
occurs, and the specific “pulverulent” form of the 
temperature field is caused by a gradual reduction of 
the membranes’ thickness.

The results of calculating the “hot” bubble 
compression (Fig. 7) show a significant deceleration 
of the ice melting process compared with the previous 
calculation. The temperature of water’s internal layers 
grows much more rapidly than in Experiments 4 and 
5. This is facilitated by both the water layers thickness 
growth when compressing the bubble, and the much 
less thermal conductivity of water compared with 
that of ice (approximately 4 times). Reduction in the 
amount of the melted ice is due to the surface area 
reduction of the heat transfer, and as a consequence, 
reduction in the total amount of heat that is brought 
to the interphase surface of the bubble. Thus, with 
the help of mathematical modeling, the distribution 
of temperature fields in the liquid in the conditions 
of the phase transition processes and the bubble size 
change (Experiments No. 1-6) was obtained. The 
study performed demonstrates that the method of 
finite elements (3)-(34) used for the mathematical 
model of non-stationary heat transfer in the liquid  
(1)-(2) surrounding the oscillating gas-tosteam bubble 
correctly displays the physical processes.

It takes into account the change in the thermal and 
physical characteristics of the liquid (31)-(34), the 
change in the bubble size (12), (22)-(25), the heat 
transfer processes at its boundary (9), and the phase 
transition processes in the liquid column (26)-(30). 
The designed mathematical model can be used to 
estimate the thermodynamic parameters of a two-
phase liquid in various technological processes. 
The suggested calculation technique can be used to 
determine the thermal and physical haracteristics of 
liquid and steam in various technological processes 
associated with gases dissolution in liquid, foam 
hardening and gas hydrates formation.

7. Conclusions
1.	A mathematical model of the non-stationary thermal 

conductivity of the oscillating bubble wall, which 

takes into account the change in the aggregate state 
as well as thermal and physical characteristics of the 
substance, has been developed. It is demonstrated 
that when applying the finite elements method, it 
is a system of nonlinear differential equations of 
the 1st order. Consideration of the above features 
in the mathematical model allows obtaining the 
values of the liquid and solid phases temperatures 
at any specific time when changing the bubble’s 
size, changing the direction of the heat flow at its 
boundary.

2.	To analyze the cor rectness of the mathematical 
modeling of transient processes in a liquid, a series 
of assessment calculations (experiments) has 
been performed. They were aimed at testing the 
reproduction of various thermodynamic conditions 
and gas-to-steam bubble modes by means of the 
mathematical model: heating and cooling together 
with the phase transition processes, compression 
and expansion. A diagram of temperature fields in 
the substance surrounding the gas-to-steam bubble 
was constructed for each experiment.

3.	The results of the calculation for an immobile 0.1 
mm diameter bubble with a boundary condition of 
the 2nd kind showed that the icing and ice melting 
velocities are almost equal, but the temperature on 
the interphase gas-water surface is approximately 
four times exceeding the temperature of the gas-
ice surface that complies to the ratio of the thermal 
conductivity of water and ice. The temperature in 
the liquid-ice phase transition zone is practically 
constant. Comparison of the frozen layers masses 
shows that when the bubble is expanding, the 
liquid freezing and the ice melting are going more 
than 1.6 times faster than in the immobile bubble. 
When compressing the bubble, the thickness of the 
ice formed or melted is approximately 1.7 times 
smaller than that of the immobile bubble.

The analysis of the obtained results has demonstrated 
that they are predictable and completely correspond 
to the physicists’ ideas of the heat transfer and phase 
transition processes flow in the liquid. 
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